数学作为现代理性文化的核心,提供了一种思维方式。按照这种思维方式,数学使得各门学科的理论知识更加系统化、逻辑化。以下是小编为大家带来的关于初中数学几何知识点总结,欢迎参阅呀!
关于初中数学几何知识点总结
1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三角形的分类
3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7、高线、中线、角平分线的意义和做法
8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9、三角形内角和定理:三角形三个内角的和等于180°
推论1直角三角形的两个锐角互余
推论2三角形的一个外角等于和它不相邻的两个内角和
推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半
10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
11、三角形外角的性质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
(2)三角形的一个外角等于与它不相邻的两个内角和;
(3)三角形的一个外角大于与它不相邻的任一内角;
(4)三角形的外角和是360°。
四边形(含多边形)知识点、概念总结
一、平行四边形的定义、性质及判定
1、两组对边平行的四边形是平行四边形。
2、性质:
(1)平行四边形的对边相等且平行
(2)平行四边形的对角相等,邻角互补
(3)平行四边形的对角线互相平分
3、判定:
(1)两组对边分别平行的四边形是平行四边形
(2)两组对边分别相等的四边形是平行四边形
(3)一组对边平行且相等的四边形是平行四边形
(4)两组对角分别相等的四边形是平行四边形
(5)对角线互相平分的四边形是平行四边形
4、对称性:平行四边形是中心对称图形
二、矩形的定义、性质及判定
1、定义:有一个角是直角的平行四边形叫做矩形
2、性质:矩形的四个角都是直角,矩形的对角线相等
3、判定:
(1)有一个角是直角的平行四边形叫做矩形
(2)有三个角是直角的四边形是矩形
(3)两条对角线相等的平行四边形是矩形
4、对称性:矩形是轴对称图形也是中心对称图形。
三、菱形的定义、性质及判定
1、定义:有一组邻边相等的平行四边形叫做菱形
(1)菱形的四条边都相等
(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角
(3)菱形被两条对角线分成四个全等的直角三角形
(4)菱形的面积等于两条对角线长的积的一半
2、s菱=争6(n、6分别为对角线长)
3、判定:
(1)有一组邻边相等的平行四边形叫做菱形
(2)四条边都相等的四边形是菱形
(3)对角线互相垂直的平行四边形是菱形
4、对称性:菱形是轴对称图形也是中心对称图形
四、正方形定义、性质及判定
1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形
2、性质:
(1)正方形四个角都是直角,四条边都相等
(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形
(4)正方形的对角线与边的夹角是45°
(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形
3、判定:
(1)先判定一个四边形是矩形,再判定出有一组邻边相等
(2)先判定一个四边形是菱形,再判定出有一个角是直角
4、对称性:正方形是轴对称图形也是中心对称图形
五、梯形的定义、等腰梯形的性质及判定
1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形
2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等
3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形
4、对称性:等腰梯形是轴对称图形
六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。
七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。
八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。
九、多边形
为什么要学习数学
作为一门普及度极广的学科,数学在人类文明的发展史上一直占据着重要的地位。虽然很多人可能会对数学产生排斥,认为它枯燥无味,但事实上,数学是所有学科的基石之一,对我们日常生活以及未来的职业发展有着重大影响。下面我将详细阐述学习数学的重要性。
首先,数学可以帮助我们提高逻辑思维能力。数学的学科性质使我们在学习的过程中时时刻刻面临着思考、推理、证明等诸多问题,而这些问题正是锻炼我们逻辑思维的好机会。通过长期的学习和练习,我们的思维能力得到提升,可以更加清晰地分析问题,更快速地找到正确的答案。这对我们在工作和生活中都非常有帮助,尤其是在解决复杂问题时更能得心应手。
其次,数学在现代科技中起着至关重要的作用。在计算机科学、物理学、经济学、工程学等领域,数学可以帮助我们建立模型、分析数据、预测趋势,并且可以在实际应用中优化和改进。例如,在人工智能领域,深度学习技术所涉及的数学概念包括线性代数、微积分和概率论等,如果没有深厚的数学基础,很难理解和应用这些技术。同时,在工程学领域,许多机械、电子、化工等产品的设计和制造过程,也需要运用到数学知识,因此学习数学可以使我们更好地参与到现代科技的发展中。
除此之外,数学也是一种普遍使用的语言,许多学科和领域都使用数学语言进行表达和交流。例如,在自然科学领域,生物学、化学、物理学等学科都使用数学语言来描述自然世界的规律和现象。在社会科学和商科领域,经济学和金融学运用的数学概念,如微积分、线性代数和统计学等,使得我们能够更好地理解经济和财务数据,并进行决策。因此,学习数学可以让我们更好地理解、沟通和交流各个领域的知识。
最后,学习数学也可以为我们的职业发展带来广泛的机遇和发展空间。在许多领域,数学专业的毕业生都有很广泛的就业机会,如金融界、数据科学、研究机构、教育等。数学专业的人才,不只会提供理论支持,同时也能够解决现实中具体的问题,使其在各自领域脱颖而出。
怎样快速提高数学成绩?
一、查缺补漏,主攻薄弱
请制作“失分分析表”,包括“不会做的”和“不该丢分的”两部分,分析模拟考试等试卷失分情况,在紧跟老师复习的基础上,针对自己的薄弱环节重点弥补、改进。
别一味冲刺难题。做题是对理论知识的进一步巩固与实检,我们要在理解的基础上加强练习,以达到巩固的目的,但不能一味追求难题偏题。
因为中考试卷中有30%是比较灵活的题型,只有10%是真正的难题。30%那部分题目是我们能拿但容易失分的题目,我们要做到尽量多拿分,但如果我们一味求难求险,就会因为忽视基础题型的夯实和巩固而失掉这部分该得的分。在基础掌握后,有条件的同学可再进行一些难题怪题的攻关,这样的策略才更能保证效率。
二、反思错题
不要盲目找题做,陷入题海中,不要“就题论题”停留在“这题我会了”的低水平上。解题能力是在反思中提升的。懂、会、悟是数学水平的三个层次。简单说,听懂了,但不一定会,更不意味着真正领悟了。
三、克服无谓失分
如何避免审题出错?
原因:看太快。
应对策略:
1.默读法;2.重点字词圈点勾画法;3.审图法。
如何降低计算失误?
表面原因是粗心,其实是计算能力不足。平时对计算不以为然,认为“没有技术含量”。事实上计算也有很多“聪明算法”,如:边化简边计算、宁加勿减、宁乘勿除、小数化分数、找最小最短的设元、放缩法、凑整法、图象法等等计算技巧。
应对策略:
1.不要为了赶时间而跳步计算;
2.宁可笔算,少用口算,更不要再抱着计算器;
3.对平时易算错的题型,可以验算一遍。
四、关注几个重点问题
1.新定义题型、非常规题型、存在性问题。
2.分析法—执果索因,逆向思维,倒过来想,假设存在;不完全归纳法—根据例子,大胆猜想、努力验证。反例排除法、特殊图形(特殊位置、极端值)探究法等。
提高数学成绩常用方法有哪些
1、预习
预期常常由于 “没时间,看不懂,不必要”等等原因被忽略。实际上预习是学习的必要过程,更是提高自学能力的好方法。
2、学会听课
听分析、听思路、听应用,关键内容一字不漏,注意记录。
3、做好错题本
每个会学习的学生都会有错题本。调查发现那些没有错题本,或者是只做不用的同学,学习效果都不好。
4、用好课外书
正确认识网络课程和课外书籍,是副食,是帮助吸收的良药。
5、注重数学思维方法的培养
要注意数学思想和方法的指导,站得高,才能看得远。
上一篇:高中数学解三角形知识点总结
下一篇:返回列表