学习物理课后要及时的复习、总结。课后的复习除了每节课后的整理笔记、完成作业外,还要进行章节的单元复习。要经常通过对比、鉴别,弄清事物的本质、内在联系以及变化发展过程,并及时归纳总结以形成系统的知识。下面是小编为大家整理的有关高考备考物理必考知识点的总结与归纳,希望对你们有帮助!
高考必考的知识点大全
1.若三个力大小相等方向互成120°,则其合力为零。
2.几个互不平行的力作用在物体上,使物体处于平衡状态,则其中一部分力的合力必与其余部分力的合力等大反向。
3.在匀变速直线运动中,任意两个连续相等的时间内的位移之差都相等,即Δx=aT2(可判断物体是否做匀变速直线运动),推广:xm-xn=(m-n) aT2。
4.在匀变速直线运动中,任意过程的平均速度等于该过程中点时刻的瞬时速度。即vt/2=v平均。
5.对于初速度为零的匀加速直线运动
(1)T末、2T末、3T末、…的瞬时速度之比为:
v1:v2:v3:…:vn=1:2:3:…:n。
(2)T内、2T内、3T内、…的位移之比为:
x1:x2:x3:…:xn=12:22:32:…:n2。
(3)第一个T内、第二个T内、第三个T内、…的位移之比为:
xⅠ:xⅡ:xⅢ:…:xn=1:3:5:…:(2n-1)。
(4)通过连续相等的位移所用的时间之比:
t1:t2:t3:…:tn=1:(21/2-1):(31/2-21/2):…:[n1/2-(n-1)1/2]。
6.物体做匀减速直线运动,末速度为零时,可以等效为初速度为零的反向的匀加速直线运动。
7.对于加速度恒定的匀减速直线运动对应的正向过程和反向过程的时间相等,对应的速度大小相等(如竖直上抛运动)
8.质量是惯性大小的唯一量度。惯性的大小与物体是否运动和怎样运动无关,与物体是否受力和怎样受力无关,惯性大小表现为改变物理运动状态的难易程度。
9.做平抛或类平抛运动的物体在任意相等的时间内速度的变化都相等,方向与加速度方向一致(即Δv=at)。
10.做平抛或类平抛运动的物体,末速度的反向延长线过水平位移的中点。
11.物体做匀速圆周运动的条件是合外力大小恒定且方向始终指向圆心,或与速度方向始终垂直。
12.做匀速圆周运动的物体,在所受到的合外力突然消失时,物体将沿圆周的切线方向飞出做匀速直线运动;在所提供的向心力大于所需要的向心力时,物体将做向心运动;在所提供的向心力小于所需要的向心力时,物体将做离心运动。
13.开普勒第一定律的内容是所有的行星围绕太阳运动的轨道都是椭圆,太阳在椭圆轨道的一个焦点上。开普勒第三定律的内容是所有行星的半长轴的三次方跟公转周期的平方的比值都相等,即R3/ T2=k。
14.地球质量为M,半径为R,万有引力常量为G,地球表面的重力加速度为g,则其间存在的一个常用的关系是。(类比其他星球也适用)
15.第一宇宙速度(近地卫星的环绕速度)的表达式v1=(GM/R)1/2=(gR) 1/2,大小为7.9m/s,它是发射卫星的最小速度,也是地球卫星的最大环绕速度。随着卫星的高度h的增加,v减小,ω减小,a减小,T增加。
16.第二宇宙速度:v2=11.2km/s,这是使物体脱离地球引力束缚的最小发射速度。
17.第三宇宙速度:v3=16.7km/s,这是使物体脱离太阳引力束缚的最小发射速度。
18.对于太空中的双星,其轨道半径与自身的质量成反比,其环绕速度与自身的质量成反比。
19.做功的过程就是能量转化的过程,做了多少功,就表示有多少能量发生了转化,所以说功是能量转化的量度,以此解题就是利用功能关系解题。
20.滑动摩擦力,空气阻力等做的功等于力和路程的乘积。
21.静摩擦力做功的特点:
(1)静摩擦力可以做正功,可以做负功也可以不做功。
(2)在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力只起到传递机械能的作用),而没有机械能与其他能量形式的相互转化。
(3)相互摩擦的系统内,一对静摩擦力所做的功的总和等于零。
22.滑动摩擦力做功的特点:
(1)滑动摩擦力可以对物体做正功,可以做负功也可以不做功。
(2)一对滑动摩擦力做功的过程中,能量的分配有两个方面:一是相互摩擦的物体之间的机械能的转移;二是系统机械能转化为内能;转化为内能的量等于滑动摩擦力与相对路程的乘积,即Q=f. Δs相对。
23.若一条直线上有三个点电荷,因相互作用而平衡,其电性及电荷量的定性分布为“两同夹一异,两大夹一小”。
24.匀强电场中,任意两点连线中点的电势等于这两点的电势的平均值。在任意方向上电势差与距离成正比。
25.正电荷在电势越高的地方,电势能越大,负电荷在电势越高的地方,电势能越小。
26.电容器充电后和电源断开,仅改变板间的距离时,场强不变。
27.两电流相互平行时无转动趋势,同向电流相互吸引,异向电流相互排斥;两电流不平行时,有转动到相互平行且电流方向相同的趋势。
28.带电粒子在磁场中仅受洛伦兹力时做圆周运动的周期与粒子的速率、半径无关,仅与粒子的质量、电荷和磁感应强度有关。
29.带电粒子在有界磁场中做圆周运动:
(1)速度偏转角等于扫过的圆心角。
(2)几个出射方向:
①粒子从某一直线边界射入磁场后又从该边界飞出时,速度与边界的夹角相等。
②在圆形磁场区域内,沿径向射入的粒子,必沿径向射出——对称性。
③刚好穿出磁场边界的条件是带电粒子在磁场中的轨迹与边界相切。
(3)运动的时间:轨迹对应的圆心角越大,带电粒子在磁场中的运动时间就越长,与粒子速度的大小无关。[t=θT/(2π)= θm/(qB)]
30.速度选择器模型:带电粒子以速度v射入正交的电场和磁场区域时,当电场力和磁场力方向相反且满足v=E/B时,带电粒子做匀速直线运动(被选择)与带电粒子的带电荷量大小、正负无关,但改变v、B、E中的任意一个量时,粒子将发生偏转。
31.回旋加速器
(1)为了使粒子在加速器中不断被加速,加速电场的周期必须等于回旋周期。
(2)粒子做匀速圆周运动的最大半径等于D形盒的半径。
(3)在粒子的质量、电荷量确定的情况下,粒子所能达到的最大动能只与D形盒的半径和磁感应强度有关,与加速器的电压无关(电压只决定了回旋次数)。
(4)将带电粒子在两盒之间的运动首尾相连起来是一个初速度为零的匀加速直线运动,带电粒子每经过电场加速一次,回旋半径就增大一次,故各次半径之比为:
1:21/2:31/2:…:n1/2。
32.在没有外界轨道约束的情况下,带电粒子在复合场中三个场力(电场力、洛伦磁力、重力)作用下的直线运动必为匀速直线运动;若为匀速圆周运动则必有电场力和重力等大、反向。
33.在闭合电路中,当外电路的任何一个电阻增大(或减小)时,电路的总电阻一定增大(或减小)。
34.滑动变阻器分压电路中,总电阻变化情况与滑动变阻器串联段电阻变化情况相同。
35.若两并联支路的电阻之和保持不变,则当两支路电阻相等时,并联总电阻最大;当两支路电阻相差最大时,并联总电阻最小。
36.电源的输出功率随外电阻变化,当内外电阻相等时,电源的输出功率最大,且最大值Pm=E2/(4r)。
37.导体棒围绕棒的一端在垂直磁场的平面内做匀速圆周运动而切割磁感线产生的电动势E=BL2ω/2。
38.对由n匝线圈构成的闭合电路,由于磁通量变化而通过导体某一横截面的电荷量q=nΔΦ/R。
39.在变加速运动中,当物体的加速度为零时,物体的速度达到最大或最小——常用于导体棒的动态分析。
40.安培力做多少正功,就有多少电能转化为其他形式的能量;安培力做多少负功,就有多少其他形式的能量转化为电能,这些电能在通过纯电阻电路时,又会通过电流做功将电能转化为内能。
41.在Φ-t图象(或回路面积不变时的B-t图象)中,图线的斜率既可以反映电动势的大小,又可以反映电源的正负极。
42.交流电的产生:计算感应电动势的最大值用Em=nBSω;计算某一段时间Δt内的感应电动势的平均值用E平均=nΔΦ/Δt,而E平均不等于对应时间段内初、末位置的算术平均值。即E平均≠E1+E2/2,注意不要漏掉n。
43.只有正弦交流电,物理量的最大值和有效值才存在21/2倍的关系。对于其他的交流电,需根据电流的热效应来确定有效值。
44.回复力与加速度的大小始终与位移的大小成正比,方向总是与位移方向相反,始终指向平衡位置。
45.做简谐运动的物体的振动是变速直线运动,因此在一个周期内,物体运动的路程是4A,半个周期内,物体的路程是2A,但在四分之一个周期内运动的路程不一定是A。
46.每一个质点的起振方向都与波源的起振方向相同。
47.对于干涉现象
(1)加强区始终加强,减弱区始终减弱。
(2)加强区的振幅A=A1+A2,减弱区的振幅A=|A1-A2|。
48.相距半波长的奇数倍的两质点,振动情况完全相反;相距半波长的偶数倍的两质点,振动情况完全相同。
49.同一质点,经过Δt =nT(n=0、1、2…),振动状态完全相同,经过Δt =nT+T/2(n=0、1、2…),振动状态完全相反。
50.小孔成像是倒立的实像,像的大小由光屏到小孔的`距离而定。
51.根据反射定律,平面镜转过一个微小的角度α,法线也随之转动α,反射光则转过2α。
52.光由真空射向三棱镜后,光线一定向棱镜的底面偏折,折射率越大,偏折程度越大。通过三棱镜看物体,看到的是物体的虚像,而且虚像向棱镜的顶角偏移,如果把棱镜放在光密介质中,情况则相反。
53.光线通过平行玻璃砖后,不改变光线行进的方向及光束的性质,但会使光线发生侧移,侧移量的大小跟入射角、折射率和玻璃砖的厚度有关。
54.光的颜色是由光的频率决定的,光在介质中的折射率也与光的频率有关,频率越大的光折射率越大。
55.用单色光做双缝干涉实验时,当两列光波到达某点的路程差为半波长的偶数倍时,该处的光互相加强,出现亮条纹;当到达某点的路程差为半波长的奇数倍时,该处的光互相减弱,出现暗条纹。
56.电磁波在介质中的传播速度跟介质和频率有关;而机械波在介质中的传播速度只跟介质有关。
57.质子和中子统称为核子,相邻的任何核子间都存着核力,核力为短程力。距离较远时,核力为零。
58.半衰期的大小由放射性元素的原子核内部本身的因素决定,跟物体所处的物理状态或化学状态无关。
59.使原子发生能级跃迁时,入射的若是光子,光子的能量必须等于两个定态的能级差或超过电离能;入射的若是电子,电子的能量必须大于或等于两个定态的能级差。
60.原子在某一定态下的能量值为En=E1/n2,该能量包括电子绕核运动的动能和电子与原子核组成的系统的电势能。
61.动量的变化量的方向与速度变化量的方向相同,与合外力的冲量方向相同,在合外力恒定的情况下,物体动量的变化量方向与物体所受合外力的方向相同,与物体加速度的方向相同。
62. F合Δt=ΔP→F合=ΔP/Δt这是牛顿第二定律的另一种表示形式,表述为物体所受的合外力等于物体动量的变化率。
63.碰撞问题遵循三个原则:
①总动量守恒;
②总动能不增加;
③合理性(保证碰撞的发生,又保证碰撞后不再发生碰撞)。
64.完全非弹性碰撞(碰撞后连成一个整体)中,动量守恒,机械能不守恒,且机械能损失最大。
65.爆炸的特点是持续时间短,内力远大于外力,系统的动量守恒
高考物理必考技巧
一、课前认真预习
预习是在课前,独立地阅读教材,自己去获取新知识的一个重要环节。
课前预习未讲授的新课,首先把新课的内容都要仔细地阅读一遍,通过阅读、分析、思考,了解教材的知识体系,重点、难点、范围和要求。对于物理概念和规律则要抓住其核心,以及与其它物理概念和规律的区别与联系,把教材中自己不懂的疑难问题记录下来。对已学过的知识,如果忘了,课前预习时可及时补上,这样,上课时就不会感到困难重重了。然后再纵观新课的内容,找出各知识点间的联系,掌握知识的脉络,绘出知识结构简图。同时还要阅读有关典型的例题并尝试解答,把解答书后习题作为阅读效果的检查,并从中总结出解题的一般思路和步骤。有能力的同学还可以适当阅读相关内容的课外书籍。
二、主动提高效率的听课
带着预习的问题听课,可以提高听课的效率,能使听课的重点更加突出。课堂上,当老师讲到自己预习时的不懂之处时,就非常主动、格外注意听,力求当堂弄懂。同时可以对比老师的讲解以检查自己对教材理解的深度和广度,学习教师对疑难问题的分析过程和思维方法,也可以作进一步的质疑、析疑、提出自己的见解。这样听完课,不仅能掌握知识的重点,突破难点,抓住关键,而且能更好地掌握老师分析问题、解决问题的思路和方法,进一步提高自己的学习能力。
三、定期整理学习笔记
在学习过程中,通过对所学知识的回顾、对照预习笔记、听课笔记、作业、达标检测、教科书和参考书等材料加以补充、归纳,使所学的知识达到系统、完整和高度概括的水平。学习笔记要简明、易看、一目了然,符合自己的特点。做到定期按知识本身的体系加以归类,整理出总结性的学习笔记,以求知识系统化。把这些思考的成果及时保存下来,以后再复习时,就能迅速地回到自己曾经达到的高度。在学习时如果轻信自己的记忆力,不做笔记,则往往会在该使用时却想不起来了,很可惜的!
四、及时做作业
作业是学好物理知识必不可少的环节,是掌握知识熟练技能的基本方法。在平时的预习中,用书上的习题检查自己的预习效果,课后作业时多进行一题多解及分析最优解法练习。在章节复习中精选课外习题自我测验,及时反馈信息。因此,认真做好作业,可以加深对所学知识的理解,发现自己知识中的薄弱环节而去有意识地加强它,逐步培养自己的分析、解决问题的能力,逐步树立解决实际问题的信心。
要做好作业,首先要仔细审题,弄清题中叙述的物理过程,明确题中所给的条件和要求解决的问题;根据题中陈述的物理现象和过程对照所学物理知识选择解题所要用到的物理概念和规律;经过冷静的思考或分析推理,建立数学关系式;借助数学工具进行计算,求解时要将各物理量的单位统一到国际单位制中;最后还必须对答案进行验证讨论,以检查所用的规律是否正确,在运算中出现的各物理的单位是否一致,答案是否正确、符合实际,物理意义是否明确,运算进程是否严密,是否还有别的解法,通过验证答案、回顾解题过程,才能牢固地掌握知识,熟悉各种解题的思路和方法,提高解题能力。
五、复习总结提高
对学过的知识,做过的练习,如果不及时复习,不会归纳总结,就容易出现知识之间的割裂而形成孤立地、呆板地学习物理知识的倾向。其结果必然是物理内容一大片,定律、公式一大堆,但对具体过程分析不清,对公式中的物理量间的关系理解不深,不会纵观全局,前后联贯,灵活运用物理概念和物理规律去解决具体问题。因此,课后要及时的复习、总结。课后的复习除了每节课后的整理笔记、完成作业外,还要进行章节的单元复习。要经常通过对比、鉴别,弄清事物的本质、内在联系以及变化发展过程,并及时归纳总结以形成系统的知识。通过分析对比,归纳总结,便可以使知识前后贯通,纵横联系,并从物理量间的因果联系和发展变化中加深对物理概念和规律的理解。这样既能不断巩固加深所学知识,又能提高归纳总结的能力。
六、做好思想准备,调整好学习心态
在学习物理的第一节课时,老师都会讲物理难学,在未学习物理之前就从高年级同学那里听说物理教难学。因此大部分同学在学习物理时都带有一些不正常的学习心态,主要表现有以下几个方面:(1)紧张、畏惧心理。物理难学在他们的心灵里留下了深深的烙印,他们害怕上物理课,害怕做物理作业,害怕老师课堂提问,害怕老师的个别谈话,怕做实验、怕动手,千方百计地回避学习,胆怯的心弦一天到晚紧绷着,不能理论联系实际,不能在实践中运用学过的知识,久而久之,越怕越难学,越难越怕学。(2)“一口吃个胖子”的心理。想把成绩搞上去,但经过一段时间的努力,成绩仍没有什么大的起色,随即产生“反正学不好了” 和“我不是学习的料”的错误心理。(3)消极心理。学习松松垮垮、马马虎虎,懒惰思想较重,学习缺乏主动性,处于被动应付状态,上课时经常“开小差”,盼望着“快下课”,老师提问大都说“不会。”
诚然,物理是难学,但绝非学不好,只要按物理学科的特点去学习,按照前面谈到的去做,理解注重思考物理过程,不死记硬背,常动手,常开动脑筋思考,不要一碰到问题就问同学或老师。在学习中要找出适合自己的学习方法,从学习中去寻找乐趣,就能培养自己学习物理的兴趣。比如一个学生在学习力的图示时就编了这样的顺口溜:“四定即定作用点、定方向、定标度、定长度,两标即标箭头、标数值和单位。”现代社会的发展,物理学起着不可估量的作用,同学们要以振兴中华为已任,以学好物理报效祖国为内部动力,要认识到自己学习的责任感和建设祖国的使命感,从而自发地、积极地、主动地学习,就一定能学好物理知识。
先把书本基础内容搞懂,要理解透彻。公式、定理都要滚瓜烂熟。还要把学过的知识点分类整理,做到心中有数。
看到题目时,首先分析考的是什么知识点,具体到什么公式,什么定理。然后根据已知和所求顺推、逆推求解。
还有,我的经验,改错本是一个很有用的东西哦!把自己的错题收集起来,改正,写明原因,心得,做了还需要经常看才会有效果。 其实有时候也并不需要照搬照抄把整个题写下来,把知识点记下就行。还有重要的一点是要整理的有条理,避免重复劳动。
高考物理备考策略
一、树立信心,客观真实地分析自己,确立努力方向
知己知彼百战百胜。只有充分地认识自己,才能找准复习的方向。学生根据自己两年多来的物理学习经历,仔细分析自己知识上的缺陷和学习能力上的不足,确定自己在物理学科方向的奋斗目标,这对整个后一段复习过程有着深远的意义。它可帮助学生确定哪些地方多花些时间,哪些地方可以放过。改正自己的缺陷,制定复习计划,用稳定的心理状态去投入复习中。
二、提高课堂45分钟的效率
课堂复习是指导学生的关键环节,在进入二轮复习阶段,很多学生已经乱了方寸,总想急功近利。个别学生课上认真不听,我行我素。认为只要课下大量地做题就行了,这种做法非常不可取。每个教师都有自己丰富的教学经验,他们在处理高三复习的内容时,可以根据学生的实际水平来制定相应的方法,以帮助班里绝大多数学生搞好复习工作。因此,提高课堂效率,在课堂教师指出的重点和难点问题消化吸收比在课下用更多的时间毫无目的地补课有用得多。
三、强化重难点知识,使知识系统化
物理学科的内容很广,重点知识却是很清晰的,无外乎力学和电学,力学中分为静力学、运动学、动力学,从所用的规律上分为牛顿运动定律,功和能量、动量。只要稍加总结,就会使你感到脉络清晰。很多同学十分害怕解力学题目,特别是一些不太熟悉的问题。但我们如果对力学知识体系非常清楚,就不会拿到题目而不知从何处入手。动力学便是受力分析与运动过程相结合的综合性问题。解决的途径无非是“牛顿定律”或“能量”。“能量”中的主要方法自然包括动能定理、动量守恒等,如果再涉及到圆周运动的问题,有关向心力的问题也要考虑进去。如果题目中的物理过程十分清楚,定理合理运用,题目自然会解答清楚。
四、对历年高考必考,但相对独立的几个知识点,要胸有成竹
机械振动和机械波、光学、原子物理这三部分每年都要考查,一般以选择题的形式独立出现,具有一定的独立性。
第一,振动与波,振动部分以简谐振动、单摆、弹簧振子、振动图像为主干知识。波动部分在每年试题中考的几率较高,且难度较大。考生应把握好如下几点:如何找波长、传播方向、算周期、速度,波形平移、质点的振动方向。波动与振动相结合的问题也是常考点,准确的把握波动与振动的特点,完成两种图像间的互相转化至关重要。
第二,光学部分包括光的波动性和粒子性,几何光学中的反射与折射。围绕这些核心内容理解与这些内容有关的一些现象,例如:在“粒子性”中,理解光电效应的四个基本特点。在光的折射中,掌握折射率的概念,理解全发射及其应用等等。
第三,原子物理部分,按照原子物理学发展的历史把各个部分的知识有机的联系在一起,形成系统的知识链。这样很容易把各个部分的分散知识系统化,在理解的基础上更加记忆深刻。例如,原子结构发展史的三个阶段及其结论;原子核的四个基本变化(衰变、裂变、聚变、人工转变);三种射线及其特点,质能方程、结合能;质子、中子的发现等等,顺着这些知识体系就很容易把一些零散的知识系统化,以便灵活的掌握这些知识。
五、复习时应重视概念,深刻理解概念和规律的物理意义,而不是死记硬背定义和公式
现在已经到了复习最关键的环节,一些同学只专注做一些成套的练习,对一轮复习过的基础知识有些淡忘,此时一定不能忽视对基本概念和基本规律的反复理解,物理概念和基本规律是分析和解决物理问题的基础和依据,解决物理问题的关键在于真正掌握物理意义,学生只注重对概念规律的肤浅记忆,并不是深入理解其知识的内涵,对规律中的各个物理量的含义、适用范围以及注意事项等关注的不多。如我们在复平抛运动知识时,我们没有必要让学生死记硬背平抛运动公式,而是在变速运动公式的基础上,讲清楚水平、竖直分运动的特点、遵循的规律以及理解两个分运动的独立性。等时性,分运动与合运动的等效性。这样不管题目如何变化,但是万变不离其宗。总之应尽最大努力明白物理的真谛,灌输物理的正确思想方法,要知其然更知其所以然。
六、复习时做多“少、精、活”的题,而不是采用“多、繁、死”的题海战术
在高考复习阶段,许多学生很不自觉的走进题海战的死胡同,高考复习要敢于顶住这种压力,要坚决摒弃课堂复习中的“多、繁、死”的题海战,所做的每一个题必须是精选的,具有代表性的,灵活性的少量题目,学生要注意做得精,做得少,做得活,(举一反三、一题多解或一题多变)。可以适当的做一些每年的高考试题以及各个省市的高考模拟题,这些题都是重点知识而且也是经典题型。要根据自己的实际突出重点,难点,把基础知识弄通弄懂,并能灵活运用,要善于提出问题,分析问题,解决问题。同时要对知识点一个一个的突破,不要顾此失彼、杂乱无章的复习。
七、复习时要加强实验,突出知识的应用和技能的掌握,而不是纸上谈兵
物理学科是一门以实验为基础的自然科学,物理实验的知识和技能是物理学不可或缺的重要组成部分,实验复习绝不能纸上谈兵,不能走向“黑板上讲的实验,练习上写的实验,考试时背的实验”的歧途。要把教材中的演示实验再做一遍,把高考大纲中要求的学生分组实验去实验室亲自体验一下。根据大纲“五能三会一了解”的要求,即能独立完成“知识内容表”中所列的实验,能明确实验目的,能理解实验原理和方法,能控制实验条件,会使用仪器,会观察、分析实验现象,会记录、处理实验数据,并得出结论;能灵活地运用已学过的物理理论、实验方法和实验仪器去处理问题”同时要了解某些实验中可能存在的系统误差和消除系统误差的方法,会用多次测量求平均值的方法减小偶然误差;系统的复习每一个实验。
总体说来,实验其实变化就在于:同一实验可用不同装置;同一装置可完成不同实验。通过学习这些题目,发现原实验可能有的变化,以这样的感悟,再结合上面所说的“五能三会一了解”的要求,复习每个实验。就可以提高“迁移转换重组”的能力,有效地应对高考中各种实验的考查。
八、合理安排时间处理好与其他科目的关系
物理复习过程中,一定要做到有效。虽然现在是最紧张的复习阶段,但也不能搞疲劳战术,带着疲惫的身躯来上课,效果可想而知。同时也不要因为各个学科的作业的繁多乱了阵脚,要根据自己的实际,有的放矢的改变自己的缺点,从审题、找规律,做题规范,使知识系统化等角度入手。
总之,在复习的过程中要抓基础、抓规范、抓落实。要做典型题,抓知识点,找薄弱点,分阶段落实,相信一定能取得好的成绩。
高中物理最难的部分
1.电磁感应
从应试而言,应是带电粒子在电磁场中的运动(力,运动轨迹,几何特别是圆),电磁感应综合(电磁感应,安培力,非匀变速运动,微元累加,含n递推,功与热)最难,位处压轴之列。当然,牛顿力学是基本功。
2.动力学
分析纵观整个高中物理,最难的地方还是在于力学。如果你是一位十年教龄的老师,相信您绝对认可我的这句话。
貌似有不少的老师总是把“力学是物理的基础”挂在嘴边(咦,好像我也是这个样子的),这也是一个大实话;但这总是被学生误解,他们会认为物理中的力学问题都很基本的、简单的。
3.电学实验
1.关于实验要注意:
描图要时分析点的走势,确定直线或曲线;用直线或圆滑曲线连线,点不一定都在线上;
反比关系常画成一个量与另一个量倒数成正比
用多次测量求平均值的方法能减小偶然误差
2.测量仪器的读数方法
需要估读的仪器:在常用的测量仪器中,刻度尺、螺旋测微器、电流表、电压表、天平、弹簧秤等读数时都需要估读。
最新高考必背物理公式
匀速直线运动的位移公式:x=vt
匀变速直线运动的速度公式:v=v0+at
匀变速直线运动的位移公式:x=v0t+at2/2
向心加速度的关系:a=ω2r a=v2/r a=4π2r/t2
力对物体做功的计算式:w=fl
牛顿第二定律:f=ma
曲线运动的线速度:v=s/t
曲线运动的角速度:ω=θ/t
线速度和角速度的关系:v=ωr
周期和频率的关系:tf=1
功率的计算式:p=w/t
动能定理:w=mvt2/2-mv02/2
重力势能的计算式:ep=mgh
上一篇:高考物理总复习知识点总结
下一篇:返回列表